Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

نویسندگان

  • R. P. Beardsley
  • D. E. Parkes
  • J. Zemen
  • S. Bowe
  • K. W. Edmonds
  • C. Reardon
  • F. Maccherozzi
  • I. Isakov
  • P. A. Warburton
  • R. P. Campion
  • B. L. Gallagher
  • S. A. Cavill
  • A. W. Rushforth
چکیده

We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of substrate orientation on lattice relaxation of epitaxial BiFeO3 thin films

We have investigated detailed structural properties of epitaxial BiFeO3 thin films grown on 001 , 110 , and 111 SrTiO3 substrates in thicknesses up to 1 m. X-ray reciprocal space mappings reveal that the fabricated films have crystal structures and the strain relaxation dictated by the substrate orientation. The rhombohedral structure, which is observed in the bulk form, is maintained only when...

متن کامل

Experimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals

Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...

متن کامل

Anisotropies in Strain and Quantum E ciency of Strained GaAs grown on GaAsP ?

An anisotropy in the quantum e ciency (QE) has been observed in photoemission from strained GaAs photocathodes excited by linearly polarized light. The wavelength dependence of the anisotropy is closely correlated with that of the electron-spin polarization. Based on a theoretical analysis, we show that the QE anisotropy is caused by an inplane strain anisotropy arising from anisotropic strain ...

متن کامل

Epitaxial growth of DNA-assembled nanoparticle superlattices on patterned substrates.

DNA-functionalized nanoparticles, including plasmonic nanoparticles, can be assembled into a wide range of crystalline arrays via synthetically programmable DNA hybridization interactions. Here we demonstrate that such assemblies can be grown epitaxially on lithographically patterned templates, eliminating grain boundaries and enabling fine control over orientation and size of assemblies up to ...

متن کامل

Effect of Strain Induced Martensite on the Deep Drawing Behavior of 304L Steel: Simulation and Experiment

Abstract In the present research, the behavior of 304L austenitic stainless steel in the deep drawing process has been studied at the room temperature through experimental and finite element simulation method. Magnetic method calibrated by XRD was used to measure induced-martensite. Martensite volume fraction in the various portion of the deep drawn cup under optimum Blank Holder Force (BHF) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017